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The problem of estimating parameters of state of a distributed parabolic system 
by observation results is considered, The system is assumed to function under 

conditions of undefined perturbations in the measurement channel and specified 
initial distribution. The problem is considered in minimax formulation [l] in 

conformity with the scheme accepted for ordinary differential equations [2] (9. 
Analytic definition of sets X (6, y (.)) (ti > 0) of states of a parabolic system 
compatible at instant 6 with the realizable signal y (t) (t E [O, 6])is obtained. 

An element of region X (e, Y (a)) which satisfies the specified minimax crit- 
erion is chosen as the optimal estimate of the true state at instant fl . Integro- 
differential equations in partial derivatives are derived for parameters that def- 
me the evolution of regions X (ti, y (.)) in time. One of the methods of approx- 
imating the input problem of observation by similar problems for systems of or- 
dinary differential equations is discussed on a specificexample. Problems of 
observation for distributed systems in different formulations appear in [3 - 61. 

Z Statement of the problem of a posteriori ob- 

servation. Let some bounded region D with boundary s consisting of a finite 
number of (n - ‘l)-dimensional hypersurfaces of class C3 (D) (cp (D) is the set of 
all functions specified in D which have p continuous derivatives) be specified in the 

n -dimensional Euclidean space R” . We consider in region D a system defined by 

the initial boundary value problem for the equation in partial derivatives of the para- 

bolic type 
arc (t, z) 

at = Au (t, x) - q (x) u (t, x) (1.1) 

a (E) u (t, E) + (1 - a (E)) q$ = 0 

;iIJ 11 u (t, Lx) - uo (x) IJLp(D) = 09 uo (4 E La (4 

(J: = co1 [x2, . . . , z,] ED, A = &+...+d&) 
n 

where i! is the time, t > 0; q (2) is a function continuous according to Holder in 

*) See A. B. Kurzhanskii and Iu. S. Osipov, Control and estimation problems in syst- 
ems with distributed parameters. Preprints International Federation of Automatic Con- 

tron, 6-th Triennial World Congress, Boston, 1975. Pittsburg, Pa., Instrument Society 
of America, 1975. 
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Minimax mean square filtration in parabolic systems 1113 

the compact region I), = ZI u S; % E S, V is the external normal to surface 
S at point % , and a (%) is a function of class Ca (s) that satisfies condition 

Ka(%)B1. 
Let the signal Y (t) accessible to measurement on segment 10, el (+I > 0) 

be representable in the form 

Y (4 --L 
l! 

x (3 EJ (& s) A? + q (t>, x. (x) E Lam (f>>, ‘1 (Q E Lrn (0, @) ( f. 2) 

where x (5) is a known function: rl (t) is the error in the measurement channel, 

and Lam (D)(Lsm (0, a)) is the transpcsed product of m spaces L, (D) (L, (0, @)). 
Hence y (t) is an m-dimensional function from L,” (0, 6). 

Using the information provided by (1.2) we have to determine the true state of 
system (1.1) at instant 6 , on the assumption that the initial state r&a (x) and funct- 
ion 9 (t) are not a priori known, but the condition 

8” ~r&)M(+&V++ ~s~ll’(t)N(t)l(t)dt<p’ (1.3) 
0 

which defines the region of their admissible values is specified. In this formula p, y , 
and p are some positive constants , M @)is a positive continuous in D, function, 
and N (t) is a continuous m X m matrix positive definite for each t E [O, Sl , 
with the prime denoting transpostion. 

D e f i n i t i o n 1. (See [2], Sect. 13). The set of those and only those states 

u (*,4 of system (1.1) for each of which can be found functions u. (g) and 

7 (t) that satisfy relations (1.1) -( 1.3) is called the information region X (13, y (- )) 
of states compatible with the obtained signal Y (t) (t E 10, @j). 

Definition 2. We call function c (29, X) that satisfies the criterion 

the optimal estimate of the true state of system (1.1) at instant 4 under conditions 
(1.2) and (1.3). 

The determination of set X (e, y (*)), and function c (ti, 2) is the object of 

the problem of a posteriori observation EZ]. 
Existence of the unique solution of problem (1.1) was shown in [S, 71 and to beofthe 

form 

u (t, 5) = 5 U (6 5, Y) ~0 (Y) dy, 0 <t < -t 00, 5 E 4 (1.5) 
D 

where U (t, x, y) (t > 0; z, YE DA is the fundamental solution of system (1.1) 
that belongs to class C1 with respect to t, to Ca with respect to X, and to Y 

from D,. 
We denote by {- &, wi (x), i = 1, 2, 3, . ..} the totality of eigenvalues and 

eigenfunctfons of the elliptic operator in the right-hand side of Eq, (1.1) (with boundary 

condition in (1.1) satisfied 1. Then 
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a) lim& - + oo? hi>~;-G,q(z), i = 1, 2, 3, . . . , 
I-KU 

b) {wi (z), i = 1, 2, 3, . ..} is th e complete orthonormal system in L, (0) 

cl U (t, 2, y) = ijl e+@i (4 a (4 

where the series in the right-hand side uniformly converges on the arbitray set [6, 

co) x D, x D,, s> 0; 

d) s 
D 

U (4 5, y) h (y) dy = jl e+ hioi (3) 

vh(4 ELM, h(z) = jlh,q(s) 

and the series uniformly converges on the arbitrary set [6, co) X D,, 6 > 0. 
Note that formula (1.5) and the last property imply the inclusion u (t, z) E L, 

((0, T) x 0) for any T > 0. 

2. Solution of the problem of a posterior1 ob:ervat- 
i o n. We use the general procedure described in [2] and, first, define in spaceL, (0) 

the region X (6, y (m)) in terms of appropriate support functionals, then, starting 

from condition (1.4), determine the sought function c (fi, z)_ 

We rewrite formulas ( 1.2) and (1.5) in the form 

u@;)= Tu,(s), T:L,(D)-+L,(D) 

y(s)= T,u,(.)+rl(-1, T,:L2P)--,L2"'(0,~) 

It is clear from Sect. 1 that the operators T and T, are linear and continuous. 
We introduce the notation T, = T X 0 and T, = T, X E (E and 0 are, 

respectively, the identical and ttie zero operators on L2”’ (0, a)), z (-) = {u. (-), 
q (0)). The constraints (1.3) can now be represented in the form of inclusion z (a) 

E Q. 
The definition of set X (fi, y (s)) implies that the element u (fi,.) E X (0, 

Y (.)> then and only then when the following system of operator equations is 

compatible: 

u (0;) = T,Z (.), y (-1 = 7'22 (~1, 2 (.) E Q 

or, what is the same, when,by Theorem 3.1 in [a], the inequality 

min {<T,*z t-1 + T,*h t-1, 2 l-J> I 2 (-1 E Q> - <h (-1, (2.1) 

Y (*I> < <I (-1, u P,*>> 

is satisfied for any I (z) CE L, (II), 3L (t) e La”’ * (0, 6) ~ In this inequality < (a), 
(e)} denotes the scalar product in the respecitve Hilbert spaces and the asterisk denot- 
es a conjugate operator. 
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Let us consider matrix K (t, z) in more detail, Taking into account formulas 
(1.5) and (1. l), it is possible to show that this matrix is symmetric with respect to i! 
and z, semipositive definite (by construction), and continuous over the totality of 
variables in region 10, @] X f0, @] for arbitrary positive 6, 

We set 
6# 

@I(+)* ka(& = 
1s 

I&,’ (C) K (t, z) ha (z) dt dz + 
00 

6 

and consider the following system of Fredholm integral equations of the second kind with 
a nonnegative kernel (which has a unique solution in Lsm (0,6)) [8,9] : 

6 

s K (t, z) y* (6, 4 dz --I- + N-l (0 y* (+A E) = Y (t) 
0 

The argument 6 in functions d @, t) and J# * (@, t) imptier that Eqs. f2.3) 
are considered on segment iO,61. 

The tight-hand side of formula (2.2) can now be expressed in the form 

PWV(~~ ?I(*))) = it-d (O(+ ~*(%4)~-t- 
hfw&P (0.Q 

(2.4) 
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M+)--d(f’, 4 A(.)---d(O, +,+g”(~)]“*} 

g2W = a”(e) - cd (6, -1, d(fh +, 

where g2 (6) > 0, since (by definition) the radicand in (2.4) is determinate for any 

function h (t) from L2m (0,6). 
Calculation of the lower bound in (2.4) (see [2], Section 13) yields 

p (I (.) 1 x (8, Y (.))) = g (6)(p2 - <y* (69.L Y* (%W” + (2.5) 

<Y* (fi,.), d (~,‘)h 

R e m a r k 1. Let us set 

f(6, t, 2)= + SSU(6, 5, Y) M-l(y) x h) ZJ (4 “rlt Y) dq dy 
DD 

Then 
f (6, t) = f Z(x) f (6, t, 5) dx 

b 

The properties a), b) and c) defined in Sect. 1 imply that function f(fi, t, 2) is 
continuous over the totality of variables in any arbitrary region [6, 00) X IO, +I X D,, 
s>o. 

Let d (6, t, z) be a solution which differs from that of the first of Eqs. (2.3) by 
that in the right-hand side it contains f (6, t, cc) instead of f (6, t) . This equation 
has also a unique solution for any x E D,. Note now that 

d(6, t)= j+Z(z)d(& t, s)dz 
D 

(using the respective properties of solutions of the indicated type [8,9] it can be shown 

that the above integral exists). 
Using the notation 

1% 

h2(6) = (y* (6, *), y” (6, .))K = \Y'(t)Y* (69 t)dt 
0 

P(fiJ, y) =+ pF4 z, 7) M-l (rl) u (6, Y, rl) drl - 
LJ 

6 

s d’(% t, y)f@, t, 4dt 
0 

6 6 

c (6, x) = 1 f’ (6, t, x) y* (6, t) dt = s d’ (6, t, 4 Y (4 dt = 

(2.6) 

(y*(&, d(fi, 

from formula (2,5) we obtain 

p(W)IXP, Y(d)) 

0 

* 9 +K 

zzz 
{ j j z(x) P (6, z, Y) 1 (Y> d=Jy}l” (p” - (2* 7, 
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As shown in [lo], the set with the supporting functional (2.7)isan ellipsoid(defined 
in space L, (D) by the related scalar product) whose center is at point c (6, e). 

Thus the following statement is valid. 
Theorem 1. The information region X (19, y (s)) of states of system (1.1) 

that is compatible with the realized signal y (t) (t E [0, 61) with restraint ( 1.3) 
is an ellipsoid, possibly degenerate, with supporting functional (2.7) and center at 
point c (6, Z) defined by the last of formulas (2.6). 

Let us consider the geometrical meaning of the derived solution of the a posteriori 

observation. 
Let the obtained signal y (t) generated by the pair of functions 

uo (4 = $j ak@k(s), 9 (Q 
k-1 

be such that (see (1.2)) 

Y (t) = cp (4 + 11 (Q cp (t) I- .$ e-hkfbkak (X b)= kgl bkmk @,) 
(2.8) 

k=l 

We denote by L the set of all functions from Lam (0,6) of the form cp (b) such 
that it is possible to determine on the basis of function u. (2) some function ?I (t) and 
a pair (ZQ, (z), q (t)) which satisfy conditions (2.8) and (1.3). Let Ll be the comple- 

ment of L to Ism(O, 6). Formula (2.8) can then be expressed in the form 

Y 0) = YI (0 + Y!J 01, M (4 = 'p (t) + rll Cd E L 

Y‘d (4 = riz (4 = L,, rl (4 = Vl (4 + % (t) 

The statement is proved (cf. [2], Sect. 11). 
T h e or e m 2. 1”. The optimal estimate of the true state of system (1.1) at 

instant 6 with conditions (1.2) and (1.3) is the center of ellipsoid X (@, y ( l )) , 
function c (19, z) defined by the last of formulas (2.6). 

Let us consider the set of signals # (t) = $#i (t) -/- 112 (t) ($4 (t) CZ L, Ya (t) E 
,!,,) generated in conformity with (X.1) -(I. 3) with fixed first component y, (t). 

2”. If the second component of the signal, i. e. function y, (t) from L1 is zero, 
the info~ation region X (B, y (*)) reaches its maximum dimension (which is most 

unfavorable for the observer, since the estimate error is then maximal). 
3”. In the most favorable case for the observer ellipsoid X (Q, y (a)) may de- 

generate into a point. Functions u. (z) and 11 (t) that have generated Y (t) 
then satisfy constraint (1.3) with the equality sign. 

3. Equations of maximum filtration. Wepasstotheinvesti- 
gation of dynamics of information regions X (a, y (s)) using Theorems 1 and 2. 
We adduce the derivation of differential equations for functions c (8, z), P (@, Z, y), 
and ha (8) the dynamics of whose variation determines the evolution of regions 

X (6, Y (*)). For this we carry a number of transformations whose admissibility will 
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be substantiated below. 
We introduce the auxilliary function B (9, x, y) defined by formula 

B (fi? x9 Y) = <d (a,.: x), d (fi,*, Y))K (3.1) 

Then, differentiating function B (6, 2, y) with respect to fi and taking into 
account formulas (3.1) and ( 1.51, Remark 1, and also the equltties 

6 6 

$IL@, 6)d(6,1, z) dt = S$ f(6J, Z)X’(Z)d(% t, z)dsdt = 
0 OD 

jd~W(% ~9 Y)~Y 

we obtain for function B (a, 2, y) the problem 

6B (6, 5, Y) 
a43 

= AB (6, 29 Y) - [q (4 + Q (Y)I B (3 

y2 [f (6,6, x) - 1 X(Y) B (6, $9 Y) dy]‘N (6) 

5 
x (x) B (0,~ Y):x] 

6>0; x, yED 

‘7 x9 Y) + (3.2) 

[ 
f(% 6, Y)- 

a(E) B (6, 2, E) + (1 - a (t)) a~ ‘“,;“’ ‘) = 0, E E S 

a (Q B (6, E, y) + (1 - a(E)) a’(;vE’ ‘) = 0, E E S 

v; II B (6, G Y) Il~r~~X~~ = 0 

From the second of formulas (2.6) follows that 

P (ti, x, Y) = + \ u (8,x, q) M-l (q) U (6, y, 11) drl - B (% 2, y) (3.3) 

D 

Hence function P (8, Z, y) satisfies the following initial boundary value problem: 
6P (6, 59 Y) 

at3 = AP V+, z, Y> - (4 (4 + q (~1) P (6,x, Y) - (3.4) 

Y2 j j +l) p (69 3, rl)N(fl)J’(e, Y, z)x(s)drlds, 6>6>0 

x, YED 

u(E)P(~,~,y)+(l--a(~)) aP(;yEVY) =o, EELS 

a (E) P (6, z, EJ + (1 - o (Q) aP ‘“,;“* E, = 0, E E S 

p (6, 2, Y) le=a = p (6, 2, y) 
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where 6 is an arbitrary positive number and P (6, 2, y) is determined by formula 

(2.6). 
Problems for functions c (0, 5) and h2 (29) are similarly derived 

6c(6, z) - = AC (8, CE) - q (z) c (43, 2) + y2 [Y (8) - 
36 5 

c (fbz) 3c (g) ds]’ (3.5) 

Iv@+) [f(% 6, z)- Sx(Y)B(% 2, Y)4] 9 fl>o, XEzJ 
D 

Theorem 3. Functions c (@, z), P (@, x, y), and h2 (a) are solutions 

of problems (3.61, (3.4) and (3.7). 
R e m a r k 2. Function c (ti, CC) can be also determined as the solution of prob - 

lem (3.5) in which B (Q, 5, y) is the solution of problem (3.2). Functions B (@, 2, y) 
and P (*,x5, Y) are linked by relationship (3.3). 

The validity of above calculations can be substantiated by the corresponding solut- 

ions of Fredholm integral equations (2.3) of the second kind [8,9]. It can also be 

shown that functions ( (a, x), P #, Z, Y), B (6, 5, Y), and h2 (6) are continuous 
over the totality of variables for 6 > 0, with x, y CE I), , and have continu- 

ous derivatives 8% (6, x)/8X*‘, d2P (Dy 5, y)/dX,2,1 d2P (8, Xy y)/dyi2* dP (et 
5, y)lafi, d2B (*, 5, y)/a~i’, d2B (6, x, y)ldyi2, 8 B (19. X. y)lti (0 > 0; 

x, y E D,, i = 1, 2, . . . , fi > + Functions c (8,‘~) and hs (8) are differen- 
tiable with respect to 6 for almost all 6 > 0. 

Using the investigations in [ll] it is possible to show the unique solvability of the 
initial boundary value problems (3.6) and (3.4) in the considered class of functions. 

4. The problem of approximation. Letus investigate on a 
specific example one of the possible method of approximating the a posteriori observa- 

tion input problem (1.1) - (1.4), using similar problems for certain systems of ordinary 
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differential equations whose solutions are well known. 
Let us consider the problem defined by the Dirichlet problem for the heat conduct- 

ion equation 

au (6 4 aa, (4 5) 
at = ax= 9 sE(O,i)* t>o (4.1) 

We assume for definiteness that M (z) = 1 and IV (1) is a unit m x m matrix. 

In this case constraint (1.3) is of the form 

B’~uo*(x)dx+y~~~‘(t)‘l(t)df43 
0 0 

(4.2) 

As the approximating sequence for problems (4. l), (1.21, and (4.2) we consider 
the following set of a posteriori observation problems (see footnote on p. 1112). For 
the system 

dUl” 
- = + (- 2up + us”) 

dt 

du.” 
A 1 

dt 
= h” (UT-~ - 2uin + u:+~), i = 2, . . 

du n 
n 1 

dt = x (&I - 2u3, t > 0 

.~(o)=u;,, i=l,...,n 

and the equation of measurement 

y (t) = GYP (t) + f (t), t = [O, e1 

.I 

(4.3) 

n-l 

(4.4) 

we have to define in space R* the information region X, (8, y (.)) of states of 

system (4.3) compatible with signal y (t) (t E [0, B]), i. e. the set of those and only 

those vectors un (ti) E’R” for each of which can be found a pair uon, E (t) that 

satisfies formulas (4.3) and (4.4) with condition 

6 

fi%;‘~‘L~~ + y2 s f’ (t) 4 (t) dt d p2 + &I, El> 0 
0 

(4.5) 

The term G” in (4.4) represents an n X m matrix with elements 
Wfl) 

gFi= s Xj(x)dx, i=O ,..., n-l, i=l,..., m 

hi 

u()n = co1 [uoln, . . ., uon”1, Hn = diag (h, . . ., h} 
x (z) = co1 [x1 (z), . . ., %n (41 

Note that function y (t)appearing in(4.4) is one and the same for all n and represents 
precisely the signal that wad reamed at the output of system (4.1) by virtue of (1.2). 
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The ad~bi~~ of such for~lati~ of problems(4.3)_(4.5) is validated by the add- 
ition to the right-hand side of inewality (4.5) of the positive arbitrary selected num- 
ber ‘% - 

By solving problems (4.3) -(4.5) (see [2], Sect. 13) we obtain the sequence of 
functions hn2 (% pn (@ and cn (6) which serve as parameters of correspdnding in- 
formation regions Xn (6, Y (-1). 

We introduce the notation 

cln (6), O,<X<h 

p (6, z) = ci* (6), (i - I) h < 2 G ih (4.6) 
0, nh<z\fl 

and denote by Pn (6, cc, y) the function derived with the use of the n X n matrix 
Pn (6) in a way similar to (4.6). The following theorem on approximation is valid. 

T h e o r e m 4. Let Xj (~1 (i = 1, . . ., m) be functions bounded on segment 
to, 11 (x (2) = Lzrn (O,i)). Then for n - 03 functions cn (fl, z), Pn (6, z, Y) and 
hna (6) uniformly converge, respectively, to functions c (@, z), P (6 , r, 34 and 
ha (6) for ie E f&T] and 2, y E [O,l] , where 6 and 2’ are arbitrary positive 

numbers. 

The author thanks A, B. Kurzhanskii for formulating this problem and valuable 
remarks. 
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